Ancient shrinking spherical interfaces in the Allen-Cahn flow
Author
dc.contributor.author
Pino Manresa, Manuel del
Author
dc.contributor.author
Gkikas, Konstantinos T.
Admission date
dc.date.accessioned
2018-08-07T20:53:32Z
Available date
dc.date.available
2018-08-07T20:53:32Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
Annales del Institut Henri Poincare-Analyse Non Lineaire Volumen: 35 Número: 1 Páginas: 187-215
es_ES
Identifier
dc.identifier.other
10.1016/j.anihpc.2017.03.005
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/150735
Abstract
dc.description.abstract
We consider the parabolic Allen Cahn equation in R-n, n >= 2,
u(t) = Delta u + (1 - u(2))u in R-n x (-infinity, 0].
We construct an ancient radially symmetric solution u(x, t) with any given number k of transition layers between -1 and +1. At main order they consist of k time-traveling copies of w with spherical interfaces distant O(log vertical bar t vertical bar) one to each other as t -> infinity. These interfaces are resemble at main order copies of the shrinking sphere ancient solution to mean the flow by mean curvature of surfaces: vertical bar x vertical bar = root-2(n -1)t. More precisely, if w(s) denotes the heteroclinic 1-dimensional solution of w '' + (1 w(2))w = 0 w(+/-infinity) = +/- 1 given by w(s) = tanh (s/root 2) we have
u(x, t) approximate to Sigma(k)(j=1)(-1)(j-1)w(vertical bar x vertical bar - rho(j) (t)) - 1/2(1+(-1)(k)) as t -> -infinity
where
rho(j)(t) = root-2(n - 1)t + 1/root 2 (j - k+1/2) log(vertical bar t vertical bar/log vertical bar t vertical bar) + O(1), j=1,...,k. (C) 2017 Elsevier Masson SAS. All rights reserved.
es_ES
Patrocinador
dc.description.sponsorship
FONDECYT
3140567
1150066
Fondo Basal CMM
Millenium Nucleus CAPDE
NC130017