Spectral gap of random hyperbolic graphs and related parameters
Artículo
Open/ Download
Publication date
2018-04Metadata
Show full item record
Cómo citar
Kiwi Krauskopf, Marcos
Cómo citar
Spectral gap of random hyperbolic graphs and related parameters
Author
Abstract
Random hyperbolic graphs have been suggested as a promising model of social networks. A few of their fundamental parameters have been studied. However, none of them concerns their spectra. We consider the random hyperbolic graph model, as formalized by [Automata, Languages, and Programming-39th International Colloquium-ICALP Part II. (2012) 573-585 Springer], and essentially determine the spectral gap of their normalized Laplacian. Specifically, we establish that with high probability the second smallest eigenvalue of the normalized Laplacian of the giant component of an n-vertex random hyperbolic graph is at least Omega(n(-(2 alpha-1))/D), where 1/2 < alpha < 1 is a model parameter and D is the network diameter (which is known to be at most polylogarithmic in n). We also show a matching (up to a polylogarithmic factor) upper bound of n(-(2 alpha-1))(log n)(1+ o(1)).
As a byproduct, we conclude that the conductance upper bound on the eigenvalue gap obtained via Cheeger's inequality is essentially tight. We also provide a more detailed picture of the collection of vertices on which the bound on the conductance is attained, in particular showing that for all subsets whose volume is O(n(epsilon)) for 0 < epsilon < 1 the obtained conductance is with high probability Omega(n(-(2 alpha-1)epsilon+o(1))). Finally, we also show consequences of our result for the minimum and maximum bisection of the giant component.
Patrocinador
Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F
CONICYT via Basal in Applied Mathematics
Indexation
Artículo de publicación ISI
Quote Item
Annals of Applied Probability Volumen: 28 Número: 2 Páginas: 941-989
Collections
The following license files are associated with this item: