Author | dc.contributor.author | Davila, Juan | |
Author | dc.contributor.author | Pino Manresa, Manuel del | |
Author | dc.contributor.author | Wei, Juncheng | |
Admission date | dc.date.accessioned | 2018-12-17T19:39:36Z | |
Available date | dc.date.available | 2018-12-17T19:39:36Z | |
Publication date | dc.date.issued | 2018-05 | |
Cita de ítem | dc.identifier.citation | Journal of Differential Geometry, 109(1), may 2018, 111-175 pp. | es_ES |
Identifier | dc.identifier.issn | 0022-040X | |
Identifier | dc.identifier.other | 10.4310/jdg/1525399218 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/153369 | |
Abstract | dc.description.abstract | The nonlocal s-fractional minimal surface equation for Sigma = partial derivative E where E is an open set in R-N is given by
H-Sigma(s)(p) := integral(RN) chi E(x) - chi E-c(x)/vertical bar x - p vertical bar N + s dx = 0 for all p is an element of Sigma
Here 0 < s < 1, chi designates characteristic function, and the integral is understood in the principal value sense. The classical notion of minimal surface is recovered by letting s -> 1. In this paper we exhibit the fi rst concrete examples (beyond the plane) of nonlocal s minimal surfaces. When s is close to 1, we fi rst construct a connected embedded s-minimal surface of revolution in R-3, the nonlocal catenoid, an analog of the standard catenoid vertical bar x(3)vertical bar = log(r + root r(2) - 1). Rather than eventual logarithmic growth, this surface becomes asymptotic to the cone vertical bar x(3)vertical bar = r root 1 - s. We also find a two-sheet embedded s-minimal surface asymptotic to the same cone, an analog to the simple union of two parallel planes. On the other hand, for any 0 < s < 1, n, m >= 1, s-minimal Lawson cones vertical bar v vertical bar = alpha vertical bar u vertical bar, (u, v), is an element of R-n x R-m, are found to exist. In sharp contrast with the classical case, we prove their stability for small s and n + m = 7, which suggests that unlike the classical theory (or the case s close to 1), the regularity of s-area minimizing surfaces may not hold true in dimension 7. | es_ES |
Patrocinador | dc.description.sponsorship | NSERC of Canada ; Fondecyt 1130360 , 1150066 ; Fondo Basal CMM ; Millenium Nucleus CAPDE NC130017. | es_ES |
Lenguage | dc.language.iso | en | es_ES |
Publisher | dc.publisher | International Press of Boston | es_ES |
Source | dc.source | Journal of Differential Geometry | es_ES |
Keywords | dc.subject | level set approach | es_ES |
Keywords | dc.subject | inequality | es_ES |
Keywords | dc.subject | regularity | es_ES |
Keywords | dc.subject | constant | es_ES |
Título | dc.title | Nonlocal s-minimal surfaces and Lawson cones | es_ES |
Document type | dc.type | Artículo de revista | |
dcterms.accessRights | dcterms.accessRights | Acceso a solo metadatos | es_ES |
Cataloguer | uchile.catalogador | rvh | es_ES |
Indexation | uchile.index | Artículo de publicación ISI | es_ES |