About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Nonlocal s-minimal surfaces and Lawson cones

Artículo
Thumbnail
Open/Download
IconNonlocals-minimal-surfaces.pdf (45.12Kb)
Access note
Acceso a solo metadatos
Publication date
2018-05
Metadata
Show full item record
Cómo citar
Davila, Juan
Cómo citar
Nonlocal s-minimal surfaces and Lawson cones
.
Copiar
Cerrar

Author
  • Davila, Juan;
  • Pino Manresa, Manuel del;
  • Wei, Juncheng;
Abstract
The nonlocal s-fractional minimal surface equation for Sigma = partial derivative E where E is an open set in R-N is given by H-Sigma(s)(p) := integral(RN) chi E(x) - chi E-c(x)/vertical bar x - p vertical bar N + s dx = 0 for all p is an element of Sigma Here 0 < s < 1, chi designates characteristic function, and the integral is understood in the principal value sense. The classical notion of minimal surface is recovered by letting s -> 1. In this paper we exhibit the fi rst concrete examples (beyond the plane) of nonlocal s minimal surfaces. When s is close to 1, we fi rst construct a connected embedded s-minimal surface of revolution in R-3, the nonlocal catenoid, an analog of the standard catenoid vertical bar x(3)vertical bar = log(r + root r(2) - 1). Rather than eventual logarithmic growth, this surface becomes asymptotic to the cone vertical bar x(3)vertical bar = r root 1 - s. We also find a two-sheet embedded s-minimal surface asymptotic to the same cone, an analog to the simple union of two parallel planes. On the other hand, for any 0 < s < 1, n, m >= 1, s-minimal Lawson cones vertical bar v vertical bar = alpha vertical bar u vertical bar, (u, v), is an element of R-n x R-m, are found to exist. In sharp contrast with the classical case, we prove their stability for small s and n + m = 7, which suggests that unlike the classical theory (or the case s close to 1), the regularity of s-area minimizing surfaces may not hold true in dimension 7.
Patrocinador
NSERC of Canada ; Fondecyt 1130360 , 1150066 ; Fondo Basal CMM ; Millenium Nucleus CAPDE NC130017.
Indexation
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/153369
DOI: 10.4310/jdg/1525399218
ISSN: 0022-040X
Quote Item
Journal of Differential Geometry, 109(1), may 2018, 111-175 pp.
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account