The interaction of microtubule associated proteins (MAPs) with the microtubule system has been characterized in depth in neuronal cells from various mammalian species. These proteins interact with well-defined domains within the acidic tubulin carboxyl-terminal regulatory region. However, there is little information on the mechanisms of MAPs-tubulin interactions in nonmammalian systems. Recently, a novel tau-like protein designated as DMAP-85 has been identified in Drosophila melanogaster, and the regulation of its interactions with cytoskeletal elements was analyzed throughout different developmental stages of this organism. In this report, the topographic domains involved in the binding of DMAP-85 with tubulin heterodimer were investigated. Affinity chromatography of DMAP-85 in matrixes of taxol-stabilized microtubules showed the reversible interaction of DMAP-85 with domains on the microtubular surface. Co-sedimentation studies using the subtilisin-treated tubulin (S-tubulin) indica