Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: A correlational study in the grain aphid, Sitobion avenae
Herbivorous insects have developed mechanisms to cope with plant barriers, including enzymatic systems to detoxify plant allelochemicals. Detoxification systems may be induced when insects are feeding on plants with increasing levels of allelochemicals. Increases in enzymatic activity have been related to energetic costs, and therefore less energy may be allocated to fitness-related traits. In this study, we explored the induction and energetic costs of detoxifying hydroxamic acids (Hx; a wheat allelochemical) in the grain aphid, Sitobion avenae. Aphids were reared on three wheat cultivars with different levels of Hx (0.26±0.08, 2.09±0.6 and 5.91±1.18 mmol kg-1 fresh mass). We performed a nested ANOVA to test the effect of Hx (main factor) and intrahost variation (nested factor) on body mass, standard metabolic rate (SMR) and the enzymatic activity of cytochrome P450s monooxygenases (P450s), glutathione S-transferases (GSTs) and esterases (ESTs). We found non-significant effects of Hx
Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: A correlational study in the grain aphid, Sitobion avenae