A malignant hyperthermia-inducing mutation in RYR1 (R163C): Alterations in Ca2+ entry, release, and retrograde signaling to the DHPR
Author
dc.contributor.author
Estève, Eric
Author
dc.contributor.author
Eltit Ortega, José Miguel
Author
dc.contributor.author
Bannister, Roger A.
Author
dc.contributor.author
Pessah, Isaac N.
Author
dc.contributor.author
Beam, Kurt G.
Author
dc.contributor.author
Allen, Paul D.
Author
dc.contributor.author
López, José R.
Admission date
dc.date.accessioned
2019-03-11T12:59:23Z
Available date
dc.date.available
2019-03-11T12:59:23Z
Publication date
dc.date.issued
2010
Cita de ítem
dc.identifier.citation
Journal of General Physiology, Volumen 135, Issue 6, 2018, Pages 619-628
Identifier
dc.identifier.issn
00221295
Identifier
dc.identifier.issn
15407748
Identifier
dc.identifier.other
10.1085/jgp.200910328
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/165000
Abstract
dc.description.abstract
Bidirectional signaling between the sarcolemmal L-type Ca2+ channel (1,4-dihydropyridine receptor [DHPR]) and the sarcoplasmic reticulum (SR) Ca2+ release channel (type 1 ryanodine receptor [RYR1]) of skeletal muscle is essential for excitation-contraction coupling (ECC) and is a well-understood prototype of conformational coupling. Mutations in either channel alter coupling fidelity and with an added pharmacologic stimulus or stress can trigger malignant hyperthermia (MH). In this study, we measured the response of wild-type (WT), heterozygous (Het), or homozygous (Horn) RYR1-R163C knock-in mouse myotubes to maintained KT depolarization. The new findings are: (a) For all there genotypes, Ca2+ transients decay during prolonged depolarization, and this decay is not a consequence of SR depletion or RYR1 inactivation. (b) The R163C mutation retards the decay rate with a rank order WT > Het > Horn, (c) The removal of external Ca2+ or the addition of Ca2+ entry blockers (nifedipine, SKF9636