Show simple item record

Authordc.contributor.authorBigot, Jérémie 
Authordc.contributor.authorLongcamp, Marieke 
Authordc.contributor.authorDal Maso, Fabien 
Authordc.contributor.authorAmarantini, David 
Admission datedc.date.accessioned2019-03-11T13:01:01Z
Available datedc.date.available2019-03-11T13:01:01Z
Publication datedc.date.issued2011
Cita de ítemdc.identifier.citationNeuroImage, Volumen 55, Issue 4, 2018, Pages 1504-1518
Identifierdc.identifier.issn10538119
Identifierdc.identifier.other10.1016/j.neuroimage.2011.01.033
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/165204
Abstractdc.description.abstractThe study of the correlations that may exist between neurophysiological signals is at the heart of modern techniques for data analysis in neuroscience. Wavelet coherence is a popular method to construct a time-frequency map that can be used to analyze the time-frequency correlations between two time series. Coherence is a normalized measure of dependence, for which it is possible to construct confidence intervals, and that is commonly considered as being more interpretable than the wavelet cross-spectrum (WCS). In this paper, we provide empirical and theoretical arguments to show that a significant level of wavelet coherence does not necessarily correspond to a significant level of dependence between random signals, especially when the number of trials is small. In such cases, we demonstrate that the WCS is a much better measure of statistical dependence, and a new statistical test to detect significant values of the cross-spectrum is proposed. This test clearly outperforms the limitat
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceNeuroImage
Keywordsdc.subjectCoherence
Keywordsdc.subjectCortico-muscular interactions
Keywordsdc.subjectCross-spectrum
Keywordsdc.subjectStatistical testing
Keywordsdc.subjectTime-frequency dependence
Keywordsdc.subjectWavelet
Títulodc.titleA new statistical test based on the wavelet cross-spectrum to detect time-frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile