Mostrar el registro sencillo del ítem

Autordc.contributor.authorBigot, Jérémie 
Autordc.contributor.authorLongcamp, Marieke 
Autordc.contributor.authorDal Maso, Fabien 
Autordc.contributor.authorAmarantini, David 
Fecha ingresodc.date.accessioned2019-03-11T13:01:01Z
Fecha disponibledc.date.available2019-03-11T13:01:01Z
Fecha de publicacióndc.date.issued2011
Cita de ítemdc.identifier.citationNeuroImage, Volumen 55, Issue 4, 2018, Pages 1504-1518
Identificadordc.identifier.issn10538119
Identificadordc.identifier.other10.1016/j.neuroimage.2011.01.033
Identificadordc.identifier.urihttps://repositorio.uchile.cl/handle/2250/165204
Resumendc.description.abstractThe study of the correlations that may exist between neurophysiological signals is at the heart of modern techniques for data analysis in neuroscience. Wavelet coherence is a popular method to construct a time-frequency map that can be used to analyze the time-frequency correlations between two time series. Coherence is a normalized measure of dependence, for which it is possible to construct confidence intervals, and that is commonly considered as being more interpretable than the wavelet cross-spectrum (WCS). In this paper, we provide empirical and theoretical arguments to show that a significant level of wavelet coherence does not necessarily correspond to a significant level of dependence between random signals, especially when the number of trials is small. In such cases, we demonstrate that the WCS is a much better measure of statistical dependence, and a new statistical test to detect significant values of the cross-spectrum is proposed. This test clearly outperforms the limitat
Idiomadc.language.isoen
Tipo de licenciadc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link a Licenciadc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Fuentedc.sourceNeuroImage
Palabras clavesdc.subjectCoherence
Palabras clavesdc.subjectCortico-muscular interactions
Palabras clavesdc.subjectCross-spectrum
Palabras clavesdc.subjectStatistical testing
Palabras clavesdc.subjectTime-frequency dependence
Palabras clavesdc.subjectWavelet
Títulodc.titleA new statistical test based on the wavelet cross-spectrum to detect time-frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions
Tipo de documentodc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogadoruchile.catalogadorSCOPUS
Indizaciónuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Descargar archivo

Icon

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Chile