Show simple item record

Authordc.contributor.authorBarros, Jorge 
Authordc.contributor.authorMorales, Susana 
Authordc.contributor.authorEchávarri, Orietta 
Authordc.contributor.authorGarcía, Arnol 
Authordc.contributor.authorOrtega, Jaime 
Authordc.contributor.authorAsahi, Takeshi 
Authordc.contributor.authorMoya, Claudia 
Authordc.contributor.authorFischman, Ronit 
Authordc.contributor.authorMaino, María P. 
Authordc.contributor.authorNúñez, Catalina 
Admission datedc.date.accessioned2019-03-18T11:56:17Z
Available datedc.date.available2019-03-18T11:56:17Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationRevista Brasileira de Psiquiatria, Volumen 39, Issue 1, 2018, Pages 1-11
Identifierdc.identifier.issn15164446
Identifierdc.identifier.other10.1590/1516-4446-2015-1877
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/167057
Abstractdc.description.abstract© 2017, Associacao Brasileira de Psiquiatria. All rights reserved. Objective: To analyze suicidal behavior and build a predictive model for suicide risk using data mining (DM) analysis. Methods: A study of 707 Chilean mental health patients (with and without suicide risk) was carried out across three healthcare centers in the Metropolitan Region of Santiago, Chile. Three hundred forty-three variables were studied using five questionnaires. DM and machine-learning tools were used via the support vector machine technique. Results: The model selected 22 variables that, depending on the circumstances in which they all occur, define whether a person belongs in a suicide risk zone (accuracy = 0.78, sensitivity = 0.77, and specificity = 0.79). Being in a suicide risk zone means patients are more vulnerable to suicide attempts or are thinking about suicide. The interrelationship between these variables is highly nonlinear, and it is interesting to note the particular ways in which they are con
Lenguagedc.language.isoen
Publisherdc.publisherAssociacao Brasileira de Psiquiatria
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceRevista Brasileira de Psiquiatria
Keywordsdc.subjectData mining
Keywordsdc.subjectMood disorders
Keywordsdc.subjectSuicide
Títulodc.titleSuicide detection in Chile: Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile