Show simple item record

Professor Advisordc.contributor.advisorBarbay, Jérémy
Professor Advisordc.contributor.advisorPérez Lantero, Pablo
Authordc.contributor.authorRojas Ledesma, Javiel
Associate professordc.contributor.otherBustos Cárdenás, Benjamín
Associate professordc.contributor.otherHitschfeld Kahler, Nancy
Associate professordc.contributor.otherKirkpatrick, David
Admission datedc.date.accessioned2019-05-02T21:00:23Z
Available datedc.date.available2019-05-02T21:00:23Z
Publication datedc.date.issued2018
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168394
General notedc.descriptionDoctor en Ciencias, Mención Computaciónes_ES
Abstractdc.description.abstractEl estudio de las interacciones entre cajas multi-dimensionales (es decir, hiperrectángulos d-dimensionales alineados a los ejes) ha encontrado aplicaciones en distintas áreas, incluyendo geometría computacional, bases de datos, teoría de grafos y redes. Esta tesis considera varias preguntas abiertas sobre este tema, enfocándose en tres materias fundamentales: el cálculo de emparejamientos de un conjunto de puntos con cajas, la detección de redundancias en la región cubierta por un conjunto de cajas, y el cálculo de distintas medidas de dicha región. Se estudia la complejidad computacional de tres grupos respectivos de problemas, tanto en el peor caso, como dentro del marco de análisis adaptativos. Primero se consideran problemas sobre el cálculo de distintas medidas de la región del espacio cubierta por un conjunto B de cajas. Se introduce el problema de calcular la distribución de profundidad de B, que generaliza el cálculo de su medida de Klee y su profundidad máxima, respectivamente. Se describen distintos algoritmos para calcular la distribución de profundidad de un conjunto de cajas, y se prueban cotas computacionales superiores refinadas para los problemas de calcular la medida de Klee y la profundidad máxima de B, respectivamente, considerando distintas medidas de dificultad de las instancias de estos problemas. Además, se demuestran distintas cotas inferiores condicionales para el problema de calcular la distribución de profundidad, que ayudan a entender su relación con otros problemas fundamentales en la computación. Luego, se estudian distintos problemas sobre el cálculo de emparejamientos de pares de puntos coloreados en un conjunto finito mediante cajas. Un emparejamiento con cajas de un conjunto finito S de puntos, es un conjunto de cajas cerradas, disjuntas dos a dos, y tales que cada caja contiene exactamente dos puntos de S. Los problemas que esta tesis considera difieren entre sí en restricciones tales como que las cajas deban emparejar solo a puntos del mismo color (llamados emparejamientos monocromáticos) o contener solo puntos de distintos colores (llamados emparejamientos bicromáticos), o restricciones sobre el conjunto de puntos, por ejemplo, que se requiera que estén en posición general. Se muestra que algunos de estos problemas son difíciles de resolver en tiempo polinomial, pero que sus soluciones óptimas se pueden aproximar hasta factores constantes en tiempo polinomial. Finalmente, se consideran problemas sobre la eliminación de redundancias en la región del espacio cubierta por un conjunto de cajas multi-dimensionales. Se estudia el problema de encontrar un kernel de cobertura de tamaño mínimo, que consiste en, dado un conjunto B de cajas d-dimensionales, encontrar un subconjunto de B de tamaño mínimo que cubra la misma región que B. Este problema es NP-difícil, pero como muchos problemas NP-difícil sobre grafos, se puede resolver en tiempo polinomial bajo distintas restricciones sobre el grafo inducido por B. Esta tesis considera varias clases de grafos, y muestra que el problema de encontrar un kernel de cobertura de tamaño mínimo sigue siendo NP-difícil incluso para instancias severamente restringidas; y proporciona dos algoritmos de aproximación en tiempo polinomial para este problema.es_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectGeometría computacionales_ES
Keywordsdc.subjectMedida de Kleees_ES
Keywordsdc.subjectKerneles_ES
Keywordsdc.subjectEmparejamientoes_ES
Títulodc.titleMatching and covering with boxeses_ES
Document typedc.typeTesises_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ciencias de la Computaciónes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile