Measure evolution of cellular automata and of finitely anticipative transformations
Author
dc.contributor.author
Collet, Pierre
Author
dc.contributor.author
Martínez Aguilera, Servet
Admission date
dc.date.accessioned
2019-05-29T13:10:12Z
Available date
dc.date.available
2019-05-29T13:10:12Z
Publication date
dc.date.issued
2017
Cita de ítem
dc.identifier.citation
Ergodic Theory and Dynamical Systems, Volumen 37, Issue 1, 2017, Pages 129-145
Identifier
dc.identifier.issn
14694417
Identifier
dc.identifier.issn
01433857
Identifier
dc.identifier.other
10.1017/etds.2015.39
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/168778
Abstract
dc.description.abstract
The evolution of cellular automata and of finitely anticipative transformations is studied by using right sets. These are the sets of symbols that are compatible with a past of a position and the respective coordinate of the transformation. Our main result shows, under some suitable conditions, that if the entropy converges to zero then the right sets increase towards the whole alphabet. We discuss these concepts with Wolfram automata.