Show simple item record

Authordc.contributor.authorLemos, Leonardo F.L. 
Authordc.contributor.authorStarke, Allan R. 
Authordc.contributor.authorBoland, John 
Authordc.contributor.authorCardemil Iglesias, José 
Authordc.contributor.authorMachado, Rubinei D. 
Authordc.contributor.authorColle, Sergio 
Admission datedc.date.accessioned2019-05-29T13:39:05Z
Available datedc.date.available2019-05-29T13:39:05Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationRenewable Energy 108 (2017) 569-580
Identifierdc.identifier.issn18790682
Identifierdc.identifier.issn09601481
Identifierdc.identifier.other10.1016/j.renene.2017.02.077
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169011
Abstractdc.description.abstractQuality data regarding direct and diffuse solar irradiation is crucial for the proper design and simulation of solar systems. This information, however, is not available for the entire Brazilian territory. However, hourly measurements of global irradiation for more than seven hundred stations over the territory are available. Several mathematical models have been developed over the past few decades aiming to deliver estimations of solar irradiation components when only measurement of global irradiation is available. In order to provide reliable estimates of diffuse and direct radiation in Brazil, the recently presented Boland Ridley Laurent (BRL) model is adjusted to the particular features of Brazilian climate data, developing adjusted BRL models on minute and hourly bases. The model is adjusted using global, diffuse and direct solar irradiation measurements at nine stations, which are maintained by INPE in the frame of the SONDA project. The methodology for processing and analyzing the quality of the data-sets and the procedures to build the adjusted BRL model is thoroughly described. The error indicators show that the adjusted BRL model performs better or similarly to the original one, for both diffuse and DNI estimates calculated for each analyzed Brazilian station. For instance, the original BRL model diffuse fraction estimates have MeAPE errors ranging from 16% to 51%, while the adjusted BRL model gives errors from 9% to 26%. Regarding the comparison between the minute and hourly adjusted models, it can be concluded that both performed similarly, indicating that the logistic behavior of the original BRL model is well suited to make estimates in sub-hourly data sets. Based on the results, the proposed adjusted model can be used to provide reliable estimates of the distribution of direct and diffuse irradiation, and therefore, can help to properly design and reduce the risks associated to solar energy systems.
Lenguagedc.language.isoen
Publisherdc.publisherElsevier
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceRenewable Energy
Keywordsdc.subjectBrazil
Keywordsdc.subjectBRL model
Keywordsdc.subjectDiffuse solar irradiation
Keywordsdc.subjectDirect normal solar irradiation
Keywordsdc.subjectSolar radiation
Títulodc.titleAssessment of solar radiation components in Brazil using the BRL model
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile