Show simple item record

Authordc.contributor.authorArtetxe, Arkaitz 
Authordc.contributor.authorGraña, Manuel 
Authordc.contributor.authorBeristain, Andoni 
Authordc.contributor.authorRíos Pérez, Sebastián 
Admission datedc.date.accessioned2019-05-29T13:39:10Z
Available datedc.date.available2019-05-29T13:39:10Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationLecture Notes in Computer Science , Volumen 10338 LNCS, 2017
Identifierdc.identifier.issn16113349
Identifierdc.identifier.issn03029743
Identifierdc.identifier.other10.1007/978-3-319-59773-7_2
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169031
Abstractdc.description.abstractShort time readmission prediction in Emergency Depart-ments (ED) is a valuable tool to improve both the ED managementand the healthcare quality. It helps identifying patients requiring fur-ther post-discharge attention as well as reducing healthcare costs. As inmany other medical domains, patient readmission data is heavily imbal-anced, i.e. the minority class is very infrequent, which is a challenge forthe construction of accurate predictors using machine learning tools. Wehave carried computational experiments on a dataset composed of EDadmission records spanning more than 100000 patients in 3 years, witha highly imbalanced distribution. We employed various approaches fordealing with this highly imbalanced dataset in combination with differ-ent classification algorithms and compared their predictive power for theestimation of the ED readmission probability within 72 h after discharge.Results show that random undersampling and Bagging (RUSBagging) incombination with Random Forest achieves the best results in terms ofArea Under ROC Curve (AUC).
Lenguagedc.language.isoen
Publisherdc.publisherSpringer Verlag
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceLecture Notes in Computer Science
Keywordsdc.subjectBagging
Keywordsdc.subjectClassification
Keywordsdc.subjectImbalanced data
Keywordsdc.subjectReadmission risk
Títulodc.titleEmergency department readmission risk prediction: A case study in Chile
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile