Show simple item record

Authordc.contributor.authorNova, David 
Authordc.contributor.authorEstévez Valencia, Pablo 
Admission datedc.date.accessioned2019-05-29T13:41:02Z
Available datedc.date.available2019-05-29T13:41:02Z
Publication datedc.date.issued2017
Identifierdc.identifier.other10.1109/WSOM.2017.8020029
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169073
Abstractdc.description.abstractIn this contribution we propose a new regularization method for the Generalized Matrix Learning Vector Quantization classifier. In particular we use a nuclear norm in order to prevent oversimplifying/over-fitting and oscillatory behaviour of the small eigenvalues of the positive semi-definite relevance matrix. The proposed method is compared with two other regularization methods in two artificial data sets and a real-life problem. The results show that the proposed regularization method enhances the generalization ability of GMLVQ. This is reflected in a lower classification error and a better interpretability of the relevance matrix.
Lenguagedc.language.isoen
Publisherdc.publisherIEEE
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.source12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization, WSOM 2017 - Proceedings
Keywordsdc.subjectArtificial Intelligence
Keywordsdc.subjectComputational Theory and Mathematics
Títulodc.titleSpectral regularization in generalized matrix learning vector quantization
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile