About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Approximation and parameterized algorithms for geometric independent set with shrinking

Artículo
Thumbnail
Open/Download
Iconitem_85038418312.pdf (2.020Kb)
Access note
Acceso a solo metadatos
Publication date
2017
Metadata
Show full item record
Cómo citar
Pilipczuk, Michal
Cómo citar
Approximation and parameterized algorithms for geometric independent set with shrinking
.
Copiar
Cerrar

Author
  • Pilipczuk, Michal;
  • Van Leeuwen, Erik Jan;
  • Wiese, Andreas;
Abstract
Consider the Maximum Weight Independent Setproblem for rectangles: given a family ofweighted axis-parallel rectangles in the plane, find a maximum-weight subset of non-overlappingrectangles. The problem is notoriously hard both in the approximation and in the parameterizedsetting. The best known polynomial-time approximation algorithms achieve super-constant ap-proximation ratios [5, 7], even though there is a(1+ )-approximation running in quasi-polynomialtime [2, 8]. When parameterized by the target size of the solution, the problem isW[1]-hard evenin the unweighted setting [12].To achieve tractability, we study the followingshrinking model: one is allowed to shrink eachinput rectangle by a multiplicative factor1−δfor some fixedδ >0, but the performance isstill compared against the optimal solution for the original, non-shrunk instance. We prove thatin this regime, the problem admits an EPTAS with running timef( ,δ)·nO(1), and an FPTalgorithm with running timef(k,δ)·nO(1), in the setting where a maximum-weight solutionof size at mostkis to be computed. This improves and significantly simplifies a PTAS givenearlier for this problem [1], and provides the first parameterized results for the shrinking model.Furthermore, we explore kernelization in the shrinking model, by giving efficient kernelizationprocedures for several variants of the problem when the input rectangles are squares.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/169102
DOI: 10.4230/LIPIcs.MFCS.2017.42
ISSN: 18688969
Quote Item
Leibniz International Proceedings in Informatics, LIPIcs, Volumen 83, 2017
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account