Show simple item record

Authordc.contributor.authorLi, Di 
Authordc.contributor.authorTang, Ningyu 
Authordc.contributor.authorNguyen, Hiep 
Authordc.contributor.authorDawson, J. 
Authordc.contributor.authorHeiles, Carl 
Authordc.contributor.authorXu, Duo 
Authordc.contributor.authorPan, Zhichen 
Authordc.contributor.authorGoldsmith, Paul 
Authordc.contributor.authorGibson, Steven 
Authordc.contributor.authorMurray, Claire 
Authordc.contributor.authorRobishaw, Tim 
Authordc.contributor.authorMcClure-Griffiths, N. 
Authordc.contributor.authorDickey, John 
Authordc.contributor.authorPineda, Jorge 
Authordc.contributor.authorStanimirović, Snežana 
Authordc.contributor.authorBronfman Aguiló, Leonardo 
Authordc.contributor.authorTroland, Thomas 
Admission datedc.date.accessioned2019-05-31T15:19:00Z
Available datedc.date.available2019-05-31T15:19:00Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationAstrophysical Journal, Supplement Series, Volumen 235, Issue 1, 2018, Pages 1-15
Identifierdc.identifier.issn00670049
Identifierdc.identifier.other10.3847/1538-4365/aaa762
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169295
Abstractdc.description.abstractHydroxyl (OH) is expected to be abundant in diffuse interstellar molecular gas because it forms along with H2 under similar conditions and forms within a similar extinction range. We have analyzed absorption measurements of OH at 1665 MHz and 1667 MHz toward 44 extragalactic continuum sources, together with the J = 1–0 transitions of 12CO, 13CO, and C18O, and the J = 2–1 transition of 12CO. The excitation temperatures of OH were found to follow a modified lognormal distribution f T exp , T ex 1 2 ln ln 3.4 K 2 ex 2 µ - 2 p s s ⎡ - ⎣ ⎤ ⎦ ( ) [ ( ) ( )] the peak of which is close to the temperature of the Galactic emission background (CMB+synchrotron). In fact, 90% of the OH has excitation temperatures within 2 K of the Galactic background at the same location, providing a plausible explanation for the apparent difficulty of mapping this abundant molecule in emission. The opacities of OH were found to be small and to peak around 0.01. For gas at intermediate extinctions (AV ∼ 0.05–2 mag), the detection rate of OH with a detection limit N(OH) ; 1012 cm−2 is approximately independent of AV. We conclude that OH is abundant in the diffuse molecular gas and OH absorption is a good tracer of “dark molecular gas (DMG).” The measured fraction of DMG depends on the assumed detection threshold of the CO data set. The next generation of highly sensitive low-frequency radio telescopes, such as FAST and SKA, will make feasible the systematic inventory of diffuse molecular gas through decomposing, in velocity, the molecular (e.g., OH and CH) absorption profiles toward background continuum sources with numbers exceeding what is currently available by orders of magnitude.
Lenguagedc.language.isoen
Publisherdc.publisherInstitute of Physics Publishing
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceAstrophysical Journal, Supplement Series
Keywordsdc.subjectevolution
Keywordsdc.subjectISM: clouds
Keywordsdc.subjectISM: molecules
Títulodc.titleWhere is OH and Does It Trace the Dark Molecular Gas (DMG)?
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile