On a competitive system with ideal free dispersal
Artículo
Open/ Download
Publication date
2018Metadata
Show full item record
Cómo citar
Cantrell, Robert Stephen
Cómo citar
On a competitive system with ideal free dispersal
Abstract
In this article we study the long term behavior of the competitive system {[Formula presented]=∇⋅[α(x)∇[Formula presented]]+u(m(x)−u−bv)inΩ,t>0,[Formula presented]=∇⋅[β(x)∇v]+v(m(x)−cu−v)inΩ,t>0,∇[Formula presented]⋅nˆ=∇v⋅nˆ=0on∂Ω,t>0, which supports for the first species an ideal free distribution, that is a positive steady state which matches the per-capita growth rate. Previous results have stated that when b=c=1 the ideal free distribution is an evolutionarily stable and neighborhood invader strategy, that is the species with density v always goes extinct. Thus, of particular interest will be to study the interplay between the inter-specific competition coefficients b,c and the diffusion coefficients α(x) and β(x) on the critical values for stability of semi-trivial steady states, and the structure of bifurcation branches of positive equilibria arising from these equilibria. We will also show that under certain regimes the system sustains multiple positive steady states.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/169360
DOI: 10.1016/j.jde.2018.05.008
ISSN: 10902732
00220396
Quote Item
Journal of Differential Equations, Volumen 265, Issue 8, 2018, Pages 3464-3493.
Collections