The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus
Artículo
Open/ Download
Access note
Acceso a solo metadatos
Publication date
2019Metadata
Show full item record
Cómo citar
Deichler, Alfonso
Cómo citar
The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus
Author
Abstract
A defining feature of the amniote tecto‐fugal visual pathway is a massive bilateral projection to the thalamus originating from a distinct neuronal population, tectal ganglion cells (TGCs), of the optic tectum/superior colliculus (TeO/SC). In sauropsids, the thalamic target of the tecto‐fugal pathway is the nucleus rotundus thalami (Rt). TGCs axons collateralize en route to Rt to target the nucleus pretectalis principalis (PT), which in turn gives rise to bilateral projection to the TeO. In rodents, the thalamic target of these TGCs afferents is the caudal division of the pulvinar complex (PulC). No pretectal structures in receipt of TGC collaterals have been described in this group. However, Baldwin et al. (2011) reported in the squirrel a feedback projection from the PulC to the SC. Pulvino‐tectal (Pul‐T) cells lie at the caudal pole of the PulC, intermingled with the axonal terminals of TGCs. Here, by performing a combination of neuronal tracing, immunohistochemistry, immunofluorescence and in situ hybridization, we characterized the pattern of projections, neurochemical profile and genoarchitecture of Pul‐T cells in the diurnal Chilean rodent Octodon degus. We found that Pul‐T neurons exhibit pretectal, but not thalamic, genoarchitectonical markers, as well as hodological and neurochemical properties that match specifically those of the avian nucleus PT. Thus, we propose that Pul‐T cells constitute a pretectal cell population hidden within the dorsal thalamus of mammals. Our results solve the oddity entailed by the apparent existence of a non‐canonic descending sensory thalamic projection and further stress the conservative character of the tectofugal pathway. This article is protected by copyright. All rights reserved.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/169667
DOI: 10.1002/cne.24540
ISSN: 10969861
00219967
Quote Item
Journal of Comparative Neurology, Volumen 527, Issue 2, 2019, Pages 372-391
Collections