Stokes and Navier–Stokes equations with Navier boundary condition Équations de Stokes et de Navier–Stokes avec la condition de Navier
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2019Metadata
Show full item record
Cómo citar
Acevedo, Paul
Cómo citar
Stokes and Navier–Stokes equations with Navier boundary condition Équations de Stokes et de Navier–Stokes avec la condition de Navier
Author
Abstract
© 2018 Académie des sciences In this paper, we study the stationary Stokes and Navier–Stokes equations with non-homogeneous Navier boundary condition in a bounded domain Ω⊂R 3 of class C 1,1 from the viewpoint of the behavior of solutions with respect to the friction coefficient α. We first prove the existence of a unique weak solution (and strong) in W 1,p (Ω) (and W 2,p (Ω)) to the linear problem for all 1<p<∞ considering minimal regularity of α using some inf–sup condition concerning the rotational operator. Furthermore, we deduce uniform estimates of the solutions for large α which enables us to obtain the strong convergence of Stokes solutions with Navier slip boundary condition to the one with no-slip boundary condition as α→∞. Finally, we discuss the same questions for the non-linear system.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/171209
DOI: 10.1016/j.crma.2018.12.002
ISSN: 1631073X
Quote Item
Comptes Rendus Mathematique, Volumen 357, Issue 2, 2019, Pages 115-119
Collections