Show simple item record

Authordc.contributor.authorJofré Cáceres, René 
Authordc.contributor.authorThompson, Philip 
Admission datedc.date.accessioned2019-10-11T17:31:08Z
Available datedc.date.available2019-10-11T17:31:08Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationMathematical Programming, Volumen 174, Issue 1-2, 2019, Pages 253-292
Identifierdc.identifier.issn14364646
Identifierdc.identifier.issn00255610
Identifierdc.identifier.other10.1007/s10107-018-1297-x
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171301
Abstractdc.description.abstract© 2018, Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society. We propose dynamic sampled stochastic approximation (SA) methods for stochastic optimization with a heavy-tailed distribution (with finite 2nd moment). The objective is the sum of a smooth convex function with a convex regularizer. Typically, it is assumed an oracle with an upper bound σ 2 on its variance (OUBV). Differently, we assume an oracle with multiplicative noise. This rarely addressed setup is more aggressive but realistic, where the variance may not be uniformly bounded. Our methods achieve optimal iteration complexity and (near) optimal oracle complexity. For the smooth convex class, we use an accelerated SA method a la FISTA which achieves, given tolerance ε> 0 , the optimal iteration complexity of O(ε-12) with a near-optimal oracle complexity of O(ε-2)[ln(ε-12)]2. This improves upon Ghadimi and Lan (Math Program 156:59–99, 2016) where it is assumed an OUBV. For the strongly
Lenguagedc.language.isoen
Publisherdc.publisherSpringer Verlag
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceMathematical Programming
Keywordsdc.subjectAcceleration
Keywordsdc.subjectComplexity
Keywordsdc.subjectComposite optimization
Keywordsdc.subjectDynamic sampling
Keywordsdc.subjectMultiplicative noise
Keywordsdc.subjectSmooth convex optimization
Keywordsdc.subjectStochastic approximation
Keywordsdc.subjectVariance reduction
Títulodc.titleOn variance reduction for stochastic smooth convex optimization with multiplicative noise
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile