Show simple item record
| Author | dc.contributor.author | Gkikas, Konstantinos T. | |
| Author | dc.contributor.author | Nguyen, Phuoc Tai | |
| Admission date | dc.date.accessioned | 2019-10-11T17:31:10Z | |
| Available date | dc.date.available | 2019-10-11T17:31:10Z | |
| Publication date | dc.date.issued | 2019 | |
| Cita de ítem | dc.identifier.citation | Journal of Differential Equations, Volumen 266, Issue 1, 2019, Pages 833-875 | |
| Identifier | dc.identifier.issn | 10902732 | |
| Identifier | dc.identifier.issn | 00220396 | |
| Identifier | dc.identifier.other | 10.1016/j.jde.2018.07.060 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/171312 | |
| Abstract | dc.description.abstract | © 2018 Elsevier Inc.Let Ω⊂RN (N≥3) be a bounded C2 domain and δ(x)=dist(x,∂Ω). Put Lμ=Δ+[Formula presented] with μ>0. In this paper, we provide various necessary and sufficient conditions for the existence of weak solutions to −Lμu=up+τin Ω,u=νon ∂Ω where μ>0, p>0, τ and ν are measures on Ω and ∂Ω respectively. We then establish existence results for the system {−Lμu=ϵvp+τin Ω,−Lμv=ϵup˜+τ˜in Ω,u=ν,v=ν˜on ∂Ω where ϵ=±1, p>0, p˜>0, τ and τ˜ are measures on Ω ν and ν˜ are measures on ∂Ω. We also deal with elliptic systems where the nonlinearities are more general. | |
| Lenguage | dc.language.iso | en | |
| Publisher | dc.publisher | Academic Press Inc. | |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| Source | dc.source | Journal of Differential Equations | |
| Keywords | dc.subject | Boundary trace | |
| Keywords | dc.subject | Elliptic systems | |
| Keywords | dc.subject | Hardy potential | |
| Keywords | dc.subject | Semilinear equations | |
| Título | dc.title | On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials | |
| Document type | dc.type | Artículo de revista | |
| Cataloguer | uchile.catalogador | SCOPUS | |
| Indexation | uchile.index | Artículo de publicación SCOPUS | |
| uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_85050670528.pdf
- Size:
- 1.787Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile