Show simple item record

Authordc.contributor.authorGkikas, Konstantinos T. 
Authordc.contributor.authorNguyen, Phuoc Tai 
Admission datedc.date.accessioned2019-10-11T17:31:10Z
Available datedc.date.available2019-10-11T17:31:10Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationJournal of Differential Equations, Volumen 266, Issue 1, 2019, Pages 833-875
Identifierdc.identifier.issn10902732
Identifierdc.identifier.issn00220396
Identifierdc.identifier.other10.1016/j.jde.2018.07.060
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171312
Abstractdc.description.abstract© 2018 Elsevier Inc.Let Ω⊂RN (N≥3) be a bounded C2 domain and δ(x)=dist(x,∂Ω). Put Lμ=Δ+[Formula presented] with μ>0. In this paper, we provide various necessary and sufficient conditions for the existence of weak solutions to −Lμu=up+τin Ω,u=νon ∂Ω where μ>0, p>0, τ and ν are measures on Ω and ∂Ω respectively. We then establish existence results for the system {−Lμu=ϵvp+τin Ω,−Lμv=ϵup˜+τ˜in Ω,u=ν,v=ν˜on ∂Ω where ϵ=±1, p>0, p˜>0, τ and τ˜ are measures on Ω ν and ν˜ are measures on ∂Ω. We also deal with elliptic systems where the nonlinearities are more general.
Lenguagedc.language.isoen
Publisherdc.publisherAcademic Press Inc.
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Differential Equations
Keywordsdc.subjectBoundary trace
Keywordsdc.subjectElliptic systems
Keywordsdc.subjectHardy potential
Keywordsdc.subjectSemilinear equations
Títulodc.titleOn the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile