An Oil Painters Recognition Method Based on Cluster Multiple Kernel Learning Algorithm
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2019Metadata
Show full item record
Cómo citar
Liao, Zhifang
Cómo citar
An Oil Painters Recognition Method Based on Cluster Multiple Kernel Learning Algorithm
Author
Abstract
A lot of image processing research works focus on natural images, such as in classification, clustering, and the research on the recognition of artworks (such as oil paintings), from feature extraction to classifier design, is relatively few. This paper focuses on oil painter recognition and tries to find the mobile application to recognize the painter. This paper proposes a cluster multiple kernel learning algorithm, which extracts oil painting features from three aspects: color, texture, and spatial layout, and generates multiple candidate kernels with different kernel functions. With the results of clustering numerous candidate kernels, we selected the sub-kernels with better classification performance, and use the traditional multiple kernel learning algorithm to carry out the multi-feature fusion classification. The algorithm achieves a better result on the Painting91 than using traditional multiple kernel learning directly.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/171764
DOI: 10.1109/ACCESS.2019.2899389
ISSN: 21693536
Quote Item
IEEE Access, Volumen 7,
Collections