Show simple item record

Authordc.contributor.authorLiao, Run Fa 
Authordc.contributor.authorWen, Hong 
Authordc.contributor.authorWu, Jinsong 
Authordc.contributor.authorPan, Fei 
Authordc.contributor.authorXu, Aidong 
Authordc.contributor.authorJiang, Yixin 
Authordc.contributor.authorXie, Feiyi 
Authordc.contributor.authorCao, Minggui 
Admission datedc.date.accessioned2019-10-30T15:22:32Z
Available datedc.date.available2019-10-30T15:22:32Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationSensors (Switzerland), Volumen 19, Issue 11, 2019,
Identifierdc.identifier.issn14248220
Identifierdc.identifier.other10.3390/s19112440
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/172274
Abstractdc.description.abstractIn this paper, a deep learning (DL)-based physical (PHY) layer authentication framework is proposed to enhance the security of industrial wireless sensor networks (IWSNs). Three algorithms, the deep neural network (DNN)-based sensor nodes’ authentication method, the convolutional neural network (CNN)-based sensor nodes’ authentication method, and the convolution preprocessing neural network (CPNN)-based sensor nodes’ authentication method, have been adopted to implement the PHY-layer authentication in IWSNs. Among them, the improved CPNN-based algorithm requires few computing resources and has extremely low latency, which enable a lightweight multi-node PHY-layer authentication. The adaptive moment estimation (Adam) accelerated gradient algorithm and minibatch skill are used to accelerate the training of the neural networks. Simulations are performed to evaluate the performance of each algorithm and a brief analysis of the application scenarios for each algorithm is discussed. Moreover, the experiments have been performed with universal software radio peripherals (USRPs) to evaluate the authentication performance of the proposed algorithms. Due to the trainings being performed on the edge sides, the proposed method can implement a lightweight authentication for the sensor nodes under the edge computing (EC) system in IWSNs.
Lenguagedc.language.isoen
Publisherdc.publisherMDPI AG
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceSensors (Switzerland)
Keywordsdc.subjectIndustrial
Keywordsdc.subjectLight-weight authentication
Keywordsdc.subjectNeural network
Keywordsdc.subjectPHY-layer
Keywordsdc.subjectWSN
Títulodc.titleDeep-learning-based physical layer authentication for industrial wireless sensor networks
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile