Moreau-Rockafellar-type formulas for the subdifferential of the supremum function
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2019Metadata
Show full item record
Cómo citar
Correa, Rafael
Cómo citar
Moreau-Rockafellar-type formulas for the subdifferential of the supremum function
Abstract
We characterize the subdifferential of the supremum function of finitely and infinitely indexed families of convex functions. The main contribution of this paper consists of providing formulas for such a subdifferential under weak continuity assumptions. The resulting formulas are given in terms of the exact subdifferential of the data functions at the reference point, and not at nearby points as in [Valadier, C. R. Math. Acad. Sci. Paris, 268 (1969), pp. 39-42]. We also derive new Fritz John- and KKT-type optimality conditions for semi-infinite convex optimization, omitting the continuity/closedness assumptions in [Dinh et al., ESAIM Control Optim. Calc. Var., 13 (2007), pp. 580-597]. When the family of functions is finite, we use continuity conditions concerning only the active functions, and not all the data functions as in [Rockafellar, Proc. Lond. Math. Soc. (3), 39 (1979), pp. 331-355; Volle, Acta Math. Vietnam., 19 (1994), pp. 137-148].
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/172574
DOI: 10.1137/18M1169370
ISSN: 10526234
Quote Item
SIAM Journal on Optimization, Volumen 29, Issue 2, 2019, Pages 1106-1130
Collections