Show simple item record

Authordc.contributor.authorVerma, Rajkumar 
Admission datedc.date.accessioned2020-03-31T14:11:14Z
Available datedc.date.available2020-03-31T14:11:14Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationInt J Intell Syst. 2020;35:718–750.es_ES
Identifierdc.identifier.issn0884-8173
Identifierdc.identifier.other10.1002/int.22223
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/173761
Abstractdc.description.abstractThe q-rung orthopair fuzzy set ((ROPFS)-R-q), proposed by Yager, is a more effective and proficient tool to represent uncertain or vague information in real-life situations. Divergence and entropy are two important measures, which have been extensively studied in different information environments, including fuzzy, intuitionistic fuzzy, interval-valued fuzzy, and Pythagorean fuzzy. In the present communication, we study the divergence and entropy measures under the q-rung orthopair fuzzy environment. First, the work defines two new order-alpha divergence measures for (q)ROPFSs to quantify the information of discrimination between two (q)ROPFSs. We also examine several mathematical properties associated with order-alpha (ROPF)-R-q divergence measures in detail. Second, the paper introduces two new parametric entropy functions called "order-alpha (ROPF)-R-q entropy measures" to measure the degree of fuzziness associated with a (ROPFS)-R-q. We show that the proposed order-alpha divergence and entropy measures include several existing divergence and entropy measures as their particular cases. Further, the paper develops a new decision-making approach to solve multiple attribute group decision-making problems under the (ROPF)-R-q environment where the information about the attribute weights is completely unknown or partially known. Finally, an example of selecting the best enterprise resource planning system is provided to illustrate the decision-making steps and effectiveness of the proposed approaches_ES
Patrocinadordc.description.sponsorshipChilean Government (Conicyt) through the Fondecyt Postdoctoral Program 3170556es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWileyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInternational Journal of Intelligent Systemses_ES
Keywordsdc.subjectDivergence measurees_ES
Keywordsdc.subjectEntropy measurees_ES
Keywordsdc.subjectERP system selectiones_ES
Keywordsdc.subjectMAGDMes_ES
Keywordsdc.subjectq-rung orthopair fuzzy setes_ES
Títulodc.titleMultiple attribute group decision‐making based on order‐α divergence and entropy measures under q‐rung orthopair fuzzy environmentes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile