Show simple item record

Authordc.contributor.authorMaldonado, Sebastián 
Authordc.contributor.authorLópez, Julio 
Authordc.contributor.authorVairetti, Carla 
Admission datedc.date.accessioned2020-04-22T15:40:06Z
Available datedc.date.available2020-04-22T15:40:06Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationEuropean Journal of Operational Research 284 (2020) 273–284es_ES
Identifierdc.identifier.other10.1016/j.ejor.2019.12.007
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174010
Abstractdc.description.abstractIn this paper, we propose three novel profit-driven strategies for churn prediction. Our proposals extend the ideas of the Minimax Probability Machine, a robust optimization approach for binary classification that maximizes sensitivity and specificity using a probabilistic setting. We adapt this method and other variants to maximize the profit of a retention campaign in the objective function, unlike most profit-based strategies that use profit metrics to choose between classifiers, and/or to define the optimal classification threshold given a probabilistic output. A first approach is developed as a learning machine that does not include a regularization term, and subsequently extended by including the LASSO and Tikhonov regularizers. Experiments on well-known churn prediction datasets show that our proposal leads to the largest profit in comparison with other binary classification techniques.es_ES
Patrocinadordc.description.sponsorshipComisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT PIA/BASAL AFB180003 Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1160738 1160894es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceEuropean Journal of Operational Researches_ES
Keywordsdc.subjectAnalyticses_ES
Keywordsdc.subjectChurn predictiones_ES
Keywordsdc.subjectSupport vector machineses_ES
Keywordsdc.subjectMinimax probability machinees_ES
Keywordsdc.subjectRobust optimizationes_ES
Títulodc.titleProfit-based churn prediction based on Minimax Probability Machineses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile