Profit-based churn prediction based on Minimax Probability Machines
Author
dc.contributor.author
Maldonado, Sebastián
Author
dc.contributor.author
López, Julio
Author
dc.contributor.author
Vairetti, Carla
Admission date
dc.date.accessioned
2020-04-22T15:40:06Z
Available date
dc.date.available
2020-04-22T15:40:06Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
European Journal of Operational Research 284 (2020) 273–284
es_ES
Identifier
dc.identifier.other
10.1016/j.ejor.2019.12.007
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/174010
Abstract
dc.description.abstract
In this paper, we propose three novel profit-driven strategies for churn prediction. Our proposals extend the ideas of the Minimax Probability Machine, a robust optimization approach for binary classification that maximizes sensitivity and specificity using a probabilistic setting. We adapt this method and other variants to maximize the profit of a retention campaign in the objective function, unlike most profit-based strategies that use profit metrics to choose between classifiers, and/or to define the optimal classification threshold given a probabilistic output. A first approach is developed as a learning machine that does not include a regularization term, and subsequently extended by including the LASSO and Tikhonov regularizers. Experiments on well-known churn prediction datasets show that our proposal leads to the largest profit in comparison with other binary classification techniques.
es_ES
Patrocinador
dc.description.sponsorship
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT PIA/BASAL
AFB180003
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1160738
1160894