Necessary conditions for tiling finitely generated amenable groups
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Hellouin de Menibus, Benjamin
Cómo citar
Necessary conditions for tiling finitely generated amenable groups
Abstract
We consider a set of necessary conditions which are efficient heuristics for deciding when a set of Wang tiles cannot tile a group.
Piantadosi [19] gave a necessary and sufficient condition for the existence of a valid tiling of any free group. This condition is actually necessary for the existence of a valid tiling for an arbitrary finitely generated group.
We consider two other conditions: the first, also given by Piantadosi [19], is a necessary and sufficient condition to decide if a set of Wang tiles gives a strongly periodic tiling of the free group; the second, given by Chazottes et. al. [9], is a necessary condition to decide if a set of Wang tiles gives a tiling of Z(2).
We show that these last two conditions are equivalent. Joining and generalising approaches from both sides, we prove that they are necessary for having a valid tiling of any finitely generated amenable group, confirming a remark of Jeandel [14]
Patrocinador
LRI internal project
ECOS-SUD project
C17E08
French National Research Agency (ANR)
ANR-16-CE40-0005
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
21170770
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/174061
DOI: 10.3934/dcds.2020116
ISSN: 1078-0947
Quote Item
Discrete and Continuous Dynamical Systems 40(4): 2335–2346, 2020
Collections
The following license files are associated with this item: