Post-seismic response of the outer accretionary prism after the 2010 Maule earthquake, Chile
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Trehu, Anne M.
Cómo citar
Post-seismic response of the outer accretionary prism after the 2010 Maule earthquake, Chile
Author
Abstract
To investigate the dynamic response of the outer accretionary prism up-dip from the patch of greatest slip during the 2010 M-w 8.8 Maule earthquake (Chile), 10 ocean-bottom seismometers (OBSs) were deployed from May 2012 to March 2013 in a small network with an inter-instrument spacing of 710 km. Nine were recovered, with four recording data from intermediate-band three-component seismometers and differential pressure gauges, and five recording data from absolute pressure gauges (APGs). All instruments were also equipped with fluid flow meters designed to detect very low rates of flow into or out of the seafloor. We present hypocenters for local earthquakes that have S-P times <17 s (i.e., within similar to 125 km of the network), with a focus on events located beneath or near the network. Most of the seismicity occurred either near the boundary between the active accretionary prism and continental basement or in the outer rise seaward of the trench. For many outer-rise earthquakes, the P and S arrivals are followed by a distinctive T-phase arrival. Very few earthquakes, and none located with hypocenters deemed "reliable," were located within the active accretionary prism or on the underlying plate boundary. Nonvolcanic tremor-like pulses and seafloor pressure transients (but no very-low-frequency earthquakes or fluid flow) were also detected. Many of the tremor observations are likely T-phases or reverberations due to soft seafloor sediments, although at least one episode may have originated within the accretionary prism south of the network. The transient seafloor pressure changes were observed simultaneously on three APGs located over the transition from the active prism to the continental basement and show polarity changes over short distances, suggesting a shallow source. Their duration of several hours to days is shorter than most geodetic transients observed using onshore GPS networks. The results demonstrate the need for densely spaced and large-aperture OBS networks equipped with APGs for understanding subduction zone behavior.
Patrocinador
National Science Foundation (NSF) OCE1130013 / OCE1129574
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT
11170047
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Geosphere Volumen: 16 Número: 1 Páginas: 13-32
Collections
The following license files are associated with this item: