Show simple item record

Authordc.contributor.authorÚbeda, Ignacio 
Authordc.contributor.authorSaavedra, José M. 
Authordc.contributor.authorNicolas, Stéphane 
Authordc.contributor.authorPetitjean, Caroline 
Authordc.contributor.authorHeutte, Laurent 
Admission datedc.date.accessioned2020-04-29T15:07:05Z
Available datedc.date.available2020-04-29T15:07:05Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationPattern Recognition Letters 131: 398-404es_ES
Identifierdc.identifier.other10.1016/j.patrec.2020.02.002
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174224
Abstractdc.description.abstractPattern spotting consists of locating different instances of a given object (i.e. an image query) in a collection of historical document images. These patterns may vary in shape, size, color, context and even style because they are hand-drawn, which makes pattern spotting a difficult task. To tackle this problem, we propose a Convolutional Neural Network (CNN) approach based on Feature Pyramid Networks (FPN) as the feature extractor of our system. Using FPN allows to extract descriptors of local regions of the documents to be indexed and queries, at multiple scales with just a single forward pass. Experiments conducted on DocExplore dataset show that the proposed system improves mAP by 73% (from 0.157 to 0.272) in pattern localization compared with state-of-the-art results, even when the feature extractor is not trained with domain-specific data. Memory requirement and computation time are also decreased since the descriptor dimension used for distance computation is reduced by a factor of 16.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT): PFCHA/MAGISTER NACIONAL/2018 -22180111, STIC-Amsud 19-STIC-04 European Union (EU) European Union (EU): HN0005604 Normandy Regiones_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourcePattern Recognition Letterses_ES
Keywordsdc.subjectPattern spottinges_ES
Keywordsdc.subjectImage retrievales_ES
Keywordsdc.subjectHistorical documentses_ES
Keywordsdc.subjectConvolutional neural networkes_ES
Títulodc.titleImproving pattern spotting in historical documents using feature pyramid networkses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/cl/