Uniform W-1,W-p estimates for an elliptic operator with Robin boundary condition in a C-1 domain
Artículo
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Amrouche, C.
Cómo citar
Uniform W-1,W-p estimates for an elliptic operator with Robin boundary condition in a C-1 domain
Author
Abstract
We consider the Robin boundary value problem div(A del u) = div f + F in Omega, a C-1 domain, with (A del u - f) . n + alpha u = g on Gamma, where the matrix A belongs to VMO(R-3), and discover the uniform estimates on parallel to u parallel to (W1,p(Omega)), with 1 < p < infinity, independent of alpha. At the difference with the case p = 2, which is simpler, we call here the weak reverse Holder inequality. This estimates show that the solution of the Robin problem converges strongly to the solution of the Dirichlet (resp. Neumann) problem in corresponding spaces when the parameter alpha tends to infinity (resp. 0).
Patrocinador
Regional Program STIC-AmSud Project
PFBasal-001
AFBasal170001
NEMBICA-20-STIC-05
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Calculus of Variations and Partial Differential Equations (2020) 59: 18p.
Collections
The following license files are associated with this item: