Show simple item record

Authordc.contributor.authorBuchan, Susannah J.
Authordc.contributor.authorMahú Sinclair, Rodrigo
Authordc.contributor.authorWuth, Jorge
Authordc.contributor.authorBalcazar Cabrera, Naysa
Authordc.contributor.authorGutiérrez, Laura
Authordc.contributor.authorNeira, Sergio
Authordc.contributor.authorBecerra Yoma, Néstor
Admission datedc.date.accessioned2020-05-13T22:02:58Z
Available datedc.date.available2020-05-13T22:02:58Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationBioacoustics 2020, Vol. 29, No. 2, 140–167es_ES
Identifierdc.identifier.other10.1080/09524622.2018.1563758
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174698
Abstractdc.description.abstractIn this paper, we present an automatic method, without human supervision, for the detection and classification of blue whale vocalizations from passive acoustic monitoring (PAM) data using Hidden Markov Model technology implemented with a state-of-the-art machine learning platform, the Kaldi speech processing toolkit. 157.5 hours of PAM data were annotated for model training and testing, selected from a dataset collected from the Corcovado Gulf, Chilean Patagonia in 2016. The system obtained produced 85.3% accuracy for detection and classification of a range of different blue whale vocalizations. This system was then validated by comparing its unsupervised detection and classification results with the published results of southeast Pacific blue whale song phrase (‘SEP2’) via spectrogram cross-correlation, involving a dataset collected with a different hydrophone instrument. The proposed system led to a reduction in the root mean square error relative to published results as high as 80% when compared with comparable methods employed elsewhere. This is a significant step in advancing the monitoring of endangered whale populations in this region, which remains poorly covered in terms of PAM and general ocean observation. With further training, testing and validation, this system can be applied to other target signals and regions of the world ocean.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherTaylor & Francises_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceBioacousticses_ES
Keywordsdc.subjectBlue whale vocalizationses_ES
Keywordsdc.subjectUnsupervised detection and classificationes_ES
Keywordsdc.subjectHMMes_ES
Keywordsdc.subjectMachine learninges_ES
Títulodc.titleAn unsupervised Hidden Markov Model-based system for the detection and classification of blue whale vocalizations off Chilees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile