Show simple item record

Authordc.contributor.authorVerstraete, David 
Authordc.contributor.authorDroguett, Enrique 
Authordc.contributor.authorModarres, Mohammad 
Admission datedc.date.accessioned2020-05-13T22:44:05Z
Available datedc.date.available2020-05-13T22:44:05Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationSensors 2020, 20, 176es_ES
Identifierdc.identifier.other10.3390/s20010176
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174710
Abstractdc.description.abstractMulti-sensor systems are proliferating in the asset management industry. Industry 4.0, combined with the Internet of Things (IoT), has ushered in the requirements of prognostics and health management systems to predict the system's reliability and assess maintenance decisions. State of the art systems now generate big machinery data and require multi-sensor fusion for integrated remaining useful life prognostic capabilities. When dealing with these data sets, traditional prediction methods are not equipped to handle the multiple sensor signals in unison. To address this challenge, this paper proposes a new, deep, adversarial approach to any remaining useful life prediction in which a novel, non-Markovian, variational, inference-based model, incorporating an adversarial methodology, is derived. To evaluate the proposed approach, two public multi-sensor data sets are used for the remaining useful life prediction applications: (1) CMAPSS turbofan engine dataset, and (2) FEMTO Pronostia rolling element bearing data set. The proposed approach obtains favorable results when against similar deep learning models.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190720es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceSensorses_ES
Keywordsdc.subjectGenerative adversarial networkses_ES
Keywordsdc.subjectVariational autoencoderses_ES
Keywordsdc.subjectPrognostics and health managementes_ES
Keywordsdc.subjectRemaining useful lifees_ES
Keywordsdc.subjectMulti-sensor fusiones_ES
Títulodc.titleA Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognosticses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile