Computing coverage kernels under restricted settings
Artículo

Access note
Acceso Abierto
Publication date
2020
Abstract
Given a set B of d-dimensional boxes (i.e., axis-aligned hyperrectangles), a minimum coverage kernel is a subset of B of minimum size covering the same region as B. Computing it is NP-hard, but as for many similar NP-hard problems (e.g., Box Cover, and Orthogonal Polygon Covering), the problem becomes solvable in polynomial time under restrictions on B. We show that computing minimum coverage kernels remains NP-hard even when restricting the graph induced by the input to a highly constrained class of graphs. Alternatively, we present two polynomial-time approximation algorithms for this problem: one deterministic with an approximation ratio within 0(logn), and one randomized with an improved approximation ratio within 0(lgOPT)(with high probability).
Patrocinador
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), CONICYT FONDECYT: 1170366, 1160543.
DICYT Vicerrectoria de Investigacion, Desarrollo e Innovacion USACH (Chile): 041933PL.
Programa Regional STICAMSUD (Chile): 19-STIC-02, CONICYT-PCHA/Doctorado Nacional/2013-63130209.
ONICYT Fondecyt/Postdoctorado: 3190550.
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Theoretical Computer Science 815(2020) 270–288
Collections
The following license files are associated with this item: