Subdifferential of the Supremum via Compactification of the Index Set
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Correa Fontecilla, Rafael
Cómo citar
Subdifferential of the Supremum via Compactification of the Index Set
Abstract
We give new characterizations for the subdifferential of the supremum of an arbitrary family of convex functions, dropping out the standard assumptions of compactness of the index set and upper semi-continuity of the functions with respect to the index (J. Convex Anal. 26, 299-324, 2019). We develop an approach based on the compactification of the index set, giving rise to an appropriate enlargement of the original family. Moreover, in contrast to the previous results in the literature, our characterizations are formulated exclusively in terms of exact subdifferentials at the nominal point. Fritz-John and KKT conditions are derived for convex semi-infinite programming.
Patrocinador
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) Fondecyt 1190012 1190110
Proyecto/Grant PIA AFB-170001
MICIU of Spain
Universidad de Alicante BEA- GAL 18/00205
Spanish Government PGC2018-097960-B-C21
Australian ARC DP 180100602
Indexation
Artículo de publicación SCOPUS
Quote Item
Vietnam Journal of Mathematics (2020)
Collections
The following license files are associated with this item: