Lipschitz Continuity of Convex Functions
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020
Author
Abstract
We provide some necessary and sufficient conditions for a proper lower semicontinuous convex function, defined on a real Banach space, to be locally or globally Lipschitz continuous. Our criteria rely on the existence of a bounded selection of the subdifferential mapping and the intersections of the subdifferential mapping and the normal cone operator to the domain of the given function. Moreover, we also point out that the Lipschitz continuity of the given function on an open and bounded (not necessarily convex) set can be characterized via the existence of a bounded selection of the subdifferential mapping on the boundary of the given set and as a consequence it is equivalent to the local Lipschitz continuity at every point on the boundary of that set. Our results are applied to extend a Lipschitz and convex function to the whole space and to study the Lipschitz continuity of its Moreau envelope functions.
Patrocinador
Fondecyt Postdoc Project
3180080
Basal Program from CONICYT-Chile
CMM-AFB 170001
National Foundation for Science & Technology Development (NAFOSTED)
101.01-2017.325
Indexation
Artículo de publicación ISI
Quote Item
Applied Mathematics & Optimization Jun 2020
Collections
The following license files are associated with this item: