Show simple item record

Authordc.contributor.authorCorrea Jullian, Camila 
Authordc.contributor.authorLópez Droguett, Enrique 
Authordc.contributor.authorCardemil Iglesias, José 
Admission datedc.date.accessioned2020-07-01T23:55:55Z
Available datedc.date.available2020-07-01T23:55:55Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationApplied Energy 268 (2020) 114943es_ES
Identifierdc.identifier.other10.1016/j.apenergy.2020.114943
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175738
Abstractdc.description.abstractReinforcement learning (RL) provides an alternative method for designing condition-based decision making in engineering systems. In this study, a simple and flexible RL tabular Q-learning framework is employed to identify the optimal operation schedules for a solar hot water system according to action-reward feedback. The system is simulated in TRNSYS software. Three energy sources must supply a building's hot-water demand: low-cost heat from solar thermal collectors and a heat-recovery chiller, coupled to a conventional heat pump. Key performance indicators are used as rewards for balancing the system's performance with regard to energy efficiency, heat-load delivery, and operational costs. A sensitivity analysis is performed for different reward functions and meteorological conditions. Optimal schedules are obtained for selected scenarios in January, April, July, and October, according to the dynamic conditions of the system. The results indicate that when solar radiation is widely available (October through April), the nominal operation schedule frequently yields the highest performance. However, the obtained schedule differs when the solar radiation is reduced, for instance, in July. On average, with prioritization of the efficient use of both low-cost energy sources, the performance in July can be on average 21% higher than under nominal schedule-based operation.es_ES
Patrocinadordc.description.sponsorshipANID/FONDAP "Solar Energy Research Center" SERC-Chile 15110019 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190720es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceApplied Energyes_ES
Keywordsdc.subjectSolar hot water systemses_ES
Keywordsdc.subjectReinforcement learninges_ES
Keywordsdc.subjectIntelligent control systemses_ES
Keywordsdc.subjectCondition-based decision makinges_ES
Keywordsdc.subjectQ-learninges_ES
Keywordsdc.subjectMachine learninges_ES
Títulodc.titleOperation scheduling in a solar thermal system: A reinforcement learning-based frameworkes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile