On the graphene Hamiltonian operator
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020
Abstract
We solve a second-order elliptic equation with quasi-periodic boundary conditions defined on a honeycomb lattice that represents the arrangement of carbon atoms in graphene. Our results generalize those found by Kuchment and Post (Commun Math Phys 275(3):805-826, 2007) to characterize not only the stability but also the instability intervals of the solutions. This characterization is obtained from the solutions of the energy eigenvalue problem given by the lattice Hamiltonian. We employ tools of the one-dimensional Floquet theory and specify under which conditions the one-dimensional theory is applicable to the structure of graphene. The systematic study of such stability and instability regions provides a tool to understand the propagation properties and behavior of the electrons wavefunction in a hexagonal lattice, a key problem in graphene-based technologies.
Patrocinador
PFBasal-01 (CeBiB)
PFBasal-03 (CMM)
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
C13E05
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1140773
1180781
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
21110749
Spanish Government
SEV-2011-0087
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Computational and Applied Mathematics (2020) 39:8
Collections
The following license files are associated with this item: