Decay of small odd solutions for long range Schrödinger and Hartree equations in one dimension
Author
dc.contributor.author
Martínez, María E.
Admission date
dc.date.accessioned
2020-07-14T15:30:46Z
Available date
dc.date.available
2020-07-14T15:30:46Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Nonlinearity 33 (2020) 1156–1182
es_ES
Identifier
dc.identifier.other
10.1088/1361-6544/ab591c
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/175954
Abstract
dc.description.abstract
We consider the long time asymptotics of (not necessarily small) odd solutions
to the nonlinear Schrödinger equation with semi-linear and nonlocal Hartree
nonlinearities, in one dimension of space. We assume data in the energy space
H1(R) only, and we prove decay to zero in compact regions of space as time
tends to infinity. We give three different results where decay holds: semilinear
NLS, NLS with a suitable potential, and defocusing Hartree. The proof is
based on the use of suitable virial identities, in the spirit of nonlinear Klein–
Gordon models (Kowalczyk et al 2017 Lett. Math. Phys. 107 921–31), and
covers scattering sub, critical and supercritical (long range) nonlinearities. No
spectral assumptions on the NLS with potential are needed.
es_ES
Patrocinador
dc.description.sponsorship
Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT)
21192076
CMM Conicyt
PIA AFB170001
Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT)
CONICYT FONDECYT
Regular 1150202
1191412