Decay of small odd solutions for long range Schrödinger and Hartree equations in one dimension
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Martínez, María E.
Cómo citar
Decay of small odd solutions for long range Schrödinger and Hartree equations in one dimension
Author
Abstract
We consider the long time asymptotics of (not necessarily small) odd solutions
to the nonlinear Schrödinger equation with semi-linear and nonlocal Hartree
nonlinearities, in one dimension of space. We assume data in the energy space
H1(R) only, and we prove decay to zero in compact regions of space as time
tends to infinity. We give three different results where decay holds: semilinear
NLS, NLS with a suitable potential, and defocusing Hartree. The proof is
based on the use of suitable virial identities, in the spirit of nonlinear Klein–
Gordon models (Kowalczyk et al 2017 Lett. Math. Phys. 107 921–31), and
covers scattering sub, critical and supercritical (long range) nonlinearities. No
spectral assumptions on the NLS with potential are needed.
Patrocinador
Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT)
21192076
CMM Conicyt
PIA AFB170001
Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT)
CONICYT FONDECYT
Regular 1150202
1191412
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Nonlinearity 33 (2020) 1156–1182
Collections
The following license files are associated with this item: