Show simple item record

Authordc.contributor.authorMolinari, Cesare 
Authordc.contributor.authorPeypouquet Urbaneja, Juan Gabriel 
Authordc.contributor.authorRoldán, Fernando 
Admission datedc.date.accessioned2020-07-30T23:15:21Z
Available datedc.date.available2020-07-30T23:15:21Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationOptimization Letters (2020) 14:1071–1088es_ES
Identifierdc.identifier.other10.1007/s11590-019-01388-y
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176212
Abstractdc.description.abstractWe present an alternating forward-backward splitting method for solving linearly constrained structured optimization problems. The algorithm takes advantage of the separable structure and possibly asymmetric regularity properties of the objective functions involved. We also describe some applications to the study of non-Newtonian fluids and image reconstruction problems. We conclude with a numerical example, and its comparison with Condat's algorithm. An acceleration heuristic is also briefly outlined.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceOptimization Letterses_ES
Keywordsdc.subjectConvex optimizationes_ES
Keywordsdc.subjectForward–backward splittinges_ES
Keywordsdc.subjectStructured problemses_ES
Títulodc.titleAlternating forward–backward splitting for linearly constrained optimization problemses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile