About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Particle-filtering-based prognostics for the state of maximum power available in lithium-ion batteries at electromobility applications

Artículo
Thumbnail
Open/Download
IconParticle-Filtering-Based-Prognostics.pdf (241.4Kb)
Access note
Acceso a solo metadatos
Publication date
2020
Metadata
Show full item record
Cómo citar
Díaz Turra, César
Cómo citar
Particle-filtering-based prognostics for the state of maximum power available in lithium-ion batteries at electromobility applications
.
Copiar
Cerrar

Author
  • Díaz Turra, César;
  • Quintero, Vanessa;
  • Pérez, Aratnis;
  • Jaramillo Montoya, Francisco;
  • Burgos Mellado, Claudio Danilo;
  • Rozas, Heraldo;
  • Orchard Concha, Marcos;
  • Sáez Hueichapan, Doris;
  • Cárdenas Dobson, Roberto;
Abstract
Nowadays, electric vehicles such as cars and bicycles are increasing their popularity due to the rising environmental consciousness. The autonomy required by these means of transport has marked a significant and steady growth in the development of battery technologies. In this sense, it is crucial to estimate and prognosticate critical parameters of battery packs such as the State of Charge (SOC), the State of Maximum Power Available (SoMPA), and the Failure Time. All these indicators are relevant to determine if both the energy stored in the battery of electric vehicles and power specifications are sufficient to successfully complete a required route, avoiding battery preventive disconnection before arrival. In this regard, this paper presents a novel approach to estimate and prognosticate the SOC and SoMPA of Lithium-Ion batteries in the context of electromobility applications. The proposed method uses the formulation of an optimization problem to find an analytical relationship between the SOC and the SoMPA; whereas the battery pack is modeled in terms of both the polarization resistance and the SOC. Particle filtering algorithms are used to compute online estimates and prognostic results, while the characterization of the usage profile of the battery bank is achieved using probability-based models (Markov chains). The problem of battery monitoring for an electric bicycle is used as a case study to validate the proposed scheme, when driven in flat and sloped routes to generate different usage profiles. It is demonstrated that the proposed methodology allows to successfully prognosticate both SOC and SoMPA when the future discharge current profile is characterized in terms of probability-based models.
Patrocinador
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1170044 Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project, ANID FB0008 University of Costa Rica CONICYT-PCHA/Doctorado Nacional 2015-21150121 2016-21161427 2014-21140201 Universidad Tecnológica de Panamá IFARHU (Grant for Doctoral Studies) SNI-SENACYT Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1170683 ANID PIA/BASAL AFB180003
Indexation
Artículo de publicación ISI
 
Artículo de publicación SCOPUS
 
Identifier
URI: https://repositorio.uchile.cl/handle/2250/176719
DOI: 10.1109/TVT.2020.2993949
Quote Item
IEEE Transactions on Vehicular Technology PP(99):1-1 (2020)
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account