About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

System-level prognostics and health management: A graph convolutional network-based framework

Artículo
Thumbnail
Open/Download
IconSystem-level-prognostics.pdf (214.2Kb)
Access note
Acceso a solo metadatos
Publication date
2020
Metadata
Show full item record
Cómo citar
RuÍz-Tagle Palazuelos, Andrés
Cómo citar
System-level prognostics and health management: A graph convolutional network-based framework
.
Copiar
Cerrar

Author
  • RuÍz-Tagle Palazuelos, Andrés;
  • López Droguett, Enrique;
Abstract
Sensing technologies have been used to gather massive amounts of data to improve system reliability analysis with the use of deep learning. Their use has been mainly focused on specific components or for the whole system, resulting in a drawback when dealing with complex systems as the interactions among components are not explicitly taken into account. Here, we propose a system-level prognostics and health management framework based on geometrical deep learning where a system, its components with their interactions, and sensor data are represented as a graph. This enables reliability analysis at different hierarchical levels by means of (1) a system-level module for system health diagnosis and prognosis based on embeddings of the system's learned features from a graph convolutional network; (2) a component-level module based on a deep graph convolutional network for health state diagnosis for the system's components; (3) a component interactions module based on a graph convolutional network autoencoder that allows for the identification of interactions among components when the system is in a degraded state. The framework is exemplified via a case study involving a chlorine dioxide generation system, in which it is shown that integrating both components' interactions and sensor data in the form of a graph improves health state diagnosis capabilities.
Patrocinador
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1190720
Indexation
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/176753
DOI: 10.1177/1748006X20935760
Quote Item
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability: Jul 2020
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account