Various Lipschitz-like properties for functions and sets I: Directional derivative and tangential characterizations
Author
dc.contributor.author
Correa Fontecilla, Rafael
Author
dc.contributor.author
Gajardo, Pedro
Author
dc.contributor.author
Thibault, Lionel
Admission date
dc.date.accessioned
2020-09-10T18:22:57Z
Available date
dc.date.available
2020-09-10T18:22:57Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
SIAM J. Optim. Vol. 20, No. 4, pp. 1766–1785 (2020)
es_ES
Identifier
dc.identifier.other
10.1137/080738271
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/176759
Abstract
dc.description.abstract
In this work we introduce for extended real valued functions, defined on a Banach space X, the concept of K directionally Lipschitzian behavior, where K is a bounded subset of X. For different types of sets K (e.g., zero, singleton, or compact), the K directionally Lipschitzian behavior recovers well-known concepts in variational analysis (locally Lipschitzian, directionally Lipschitzian, or compactly epi-Lipschitzian properties, respectively). Characterizations of this notion are provided in terms of the lower Dini subderivatives. We also adapt the concept for sets and establish characterizations of the mentioned behavior in terms of the Bouligand tangent cones. The special case of convex functions and sets is also studied.
es_ES
Patrocinador
dc.description.sponsorship
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1080173
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT PIA/BASAL