Various Lipschitz-like properties for functions and sets I: Directional derivative and tangential characterizations
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Correa Fontecilla, Rafael
Cómo citar
Various Lipschitz-like properties for functions and sets I: Directional derivative and tangential characterizations
Abstract
In this work we introduce for extended real valued functions, defined on a Banach space X, the concept of K directionally Lipschitzian behavior, where K is a bounded subset of X. For different types of sets K (e.g., zero, singleton, or compact), the K directionally Lipschitzian behavior recovers well-known concepts in variational analysis (locally Lipschitzian, directionally Lipschitzian, or compactly epi-Lipschitzian properties, respectively). Characterizations of this notion are provided in terms of the lower Dini subderivatives. We also adapt the concept for sets and establish characterizations of the mentioned behavior in terms of the Bouligand tangent cones. The special case of convex functions and sets is also studied.
Patrocinador
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1080173
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT PIA/BASAL
Indexation
Artículo de publicación ISI
Quote Item
SIAM J. Optim. Vol. 20, No. 4, pp. 1766–1785 (2020)
Collections
The following license files are associated with this item: