Cancer cells with defective oxidative phosphorylation require endoplasmic reticulum–to–mitochondria Ca2+ transfer for survival
Author
dc.contributor.author
Cárdenas, César
Author
dc.contributor.author
Lovy, Alenka
Author
dc.contributor.author
Silva Pavéz, Eduardo
Author
dc.contributor.author
Urra Faúndez, Félix
Author
dc.contributor.author
Mizzoni, Craig
Author
dc.contributor.author
Ahumada Castro, Ulises
Author
dc.contributor.author
Bustos, Galdo
Author
dc.contributor.author
Jaña, Fabián
Author
dc.contributor.author
Cruz, Pablo
Author
dc.contributor.author
Farías, Paula
Author
dc.contributor.author
Mendoza, Elizabeth
Author
dc.contributor.author
Huerta, Hernán
Author
dc.contributor.author
Murgas, Paola
Author
dc.contributor.author
Hunter, Martín
Author
dc.contributor.author
Ríos, Melany
Author
dc.contributor.author
Cerda Arancibia, Oscar
Author
dc.contributor.author
Georgakoudi, Irene
Author
dc.contributor.author
Zakarian, Armen
Author
dc.contributor.author
Molgó, Jordi
Author
dc.contributor.author
Foskett, James Kevin
Admission date
dc.date.accessioned
2020-09-21T16:27:58Z
Available date
dc.date.available
2020-09-21T16:27:58Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Sci. Signal. 13, eaay1212 (2020)
es_ES
Identifier
dc.identifier.other
10.1126/scisignal.aay1212
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/176797
Abstract
dc.description.abstract
Spontaneous Ca2+ signaling from the InsP(3)R intracellular Ca2+ release channel to mitochondria is essential for optimal oxidative phosphorylation (OXPHOS) and ATP production. In cells with defective OXPHOS, reductive carboxylation replaces oxidative metabolism to maintain amounts of reducing equivalents and metabolic precursors. To investigate the role of mitochondrial Ca2+ uptake in regulating bioenergetics in these cells, we used OXPHOS-competent and OXPHOS-defective cells. Inhibition of InsP(3)R activity or mitochondrial Ca2+ uptake increased alpha-ketoglutarate (alpha KG) abundance and the NAD(+)/NADH ratio, indicating that constitutive endoplasmic reticulum (ER)-to-mitochondria Ca2+ transfer promoted optimal alpha KG dehydrogenase (alpha KGDH) activity. Reducing mitochondrial Ca2+ inhibited alpha KGDH activity and increased NAD(+), which induced SIRT1-dependent autophagy in both OXPHOS-competent and OXPHOS-defective cells. Whereas autophagic flux in OXPHOS-competent cells promoted cell survival, it was impaired in OXPHOS-defective cells because of inhibition of autophagosome-lysosome fusion. Inhibition of alpha KGDH and impaired autophagic flux in OXPHOS-defective cells resulted in pronounced cell death in response to interruption of constitutive flux of Ca2+ from ER to mitochondria. These results demonstrate that mitochondria play a fundamental role in maintaining bioenergetic homeostasis of both OXPHOS-competent and OXPHOS-defective cells, with Ca2+ regulation of alpha KGDH activity playing a pivotal role. Inhibition of ER-to-mitochondria Ca2+ transfer may represent a general therapeutic strategy against cancer cells regardless of their OXPHOS status.
es_ES
Patrocinador
dc.description.sponsorship
Comisión Nacional de Investigador Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1160332
11170291
3140458
3170813
United States Department of Health & Human Services
National Institutes of Health (NIH) - USA
R37GM56328
S10OD021624
P30NS047243
Emerson Collective Cancer Research Fund
ANID/FONDAP
15150012
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
AAAS. American Association for the Advancement of Science