Show simple item record

Authordc.contributor.authorCuevas, Evelyn 
Authordc.contributor.authorCourdurier, Matías 
Authordc.contributor.authorOsses Alvarado, Axel 
Authordc.contributor.authorCastañeda Zeman, Víctor 
Authordc.contributor.authorPalacios, Benjamín 
Authordc.contributor.authorHärtel, Steffen 
Admission datedc.date.accessioned2020-09-30T21:46:37Z
Available datedc.date.available2020-09-30T21:46:37Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationInverse Problems. Vol. 36, No. 7: 075005 (2020)es_ES
Identifierdc.identifier.other10.1088/1361-6420/ab80d8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176915
Abstractdc.description.abstractWe study an inverse problem for light sheet fluorescence microscopy (LSFM), where the density of fluorescent molecules needs to be reconstructed. Our first step is to present a mathematical model to describe the measurements obtained by an optic camera during an LSFM experiment. Two meaningful stages are considered: excitation and fluorescence. We propose a paraxial model to describe the excitation process which is directly related with the Fermi pencil-beam equation. For the fluorescence stage, we use the transport equation to describe the transport of photons towards the detection camera. For the mathematical inverse problem that we obtain after the modeling, we present a uniqueness result, recasting the problem as the recovery of the initial condition for the heat equation in Rx(0,infinity) from measurements in a space-time curve. Additionally, we present numerical experiments to recover the density of the fluorescent molecules by discretizing the proposed model and facing this problem as the solution of a large and sparse linear system. Some iterative and regularized methods are used to achieve this objective. The results show that solving the inverse problem achieves better reconstructions than the direct acquisition method that is currently used.es_ES
Patrocinadordc.description.sponsorshipCONICYT-PCHA/Doctorado Nacional 2016-21161721 SENESCYT/Convocatoria Department of Mathematical Engineering at Universidad de Chile UCH-1566 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1191903 1181823 EQM 140119 EQM 130051 11170475 Basal Program PFB-03 AFB170001 MathAmsud 18-MATH-04 FONDAP 15110009 Millennium Nucleus for Cardiovascular Magnetic Resonance Boazici University, Istanbul, Turkey CORFO 16CTTS-66390 ICM P09-015-F ID19I10334 Office of Naval Research N00014-17-1-2096 Fondequip EQM130051es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInverse Problemses_ES
Keywordsdc.subjectLSFMes_ES
Keywordsdc.subjectFermi pencil- beam equationes_ES
Keywordsdc.subjectRadiative transport equationes_ES
Keywordsdc.subjectBackward uniquenesses_ES
Keywordsdc.subjectHeat equationes_ES
Títulodc.titleMathematical modeling for 2D light-sheet fluorescence microscopy image reconstructiones_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile