Operations Research Letters. Vol. 48, No. 4, July 2020: 472-479
es_ES
Identifier
dc.identifier.other
10.1016/j.orl.2020.05.008
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/176948
Abstract
dc.description.abstract
We study the minimum makespan problem on identical machines in which we want to assign a set of n given jobs to m machines in order to minimize the maximum load over the machines. We prove upper and lower bounds for the extension complexity of its linear programming formulations. In particular, we prove that the canonical formulation for the problem has extension complexity 2(Omega(n/logn)), even if each job has size 1 or 2 and the optimal makespan is 2.
es_ES
Patrocinador
dc.description.sponsorship
GACR project, Czech Republic
17-09142S
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1170223