Show simple item record

Authordc.contributor.authorTiwary, Hans Raj 
Authordc.contributor.authorVerdugo, Víctor 
Authordc.contributor.authorWiese, Andreas 
Admission datedc.date.accessioned2020-10-01T20:50:53Z
Available datedc.date.available2020-10-01T20:50:53Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationOperations Research Letters. Vol. 48, No. 4, July 2020: 472-479es_ES
Identifierdc.identifier.other10.1016/j.orl.2020.05.008
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176948
Abstractdc.description.abstractWe study the minimum makespan problem on identical machines in which we want to assign a set of n given jobs to m machines in order to minimize the maximum load over the machines. We prove upper and lower bounds for the extension complexity of its linear programming formulations. In particular, we prove that the canonical formulation for the problem has extension complexity 2(Omega(n/logn)), even if each job has size 1 or 2 and the optimal makespan is 2.es_ES
Patrocinadordc.description.sponsorshipGACR project, Czech Republic 17-09142S Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1170223es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceOperations Research Letterses_ES
Keywordsdc.subjectExtended formulationses_ES
Keywordsdc.subjectMakespan schedulinges_ES
Keywordsdc.subjectLinear programminges_ES
Títulodc.titleOn the extension complexity of schedulinges_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile