On the extension complexity of scheduling
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020
Author
Abstract
We study the minimum makespan problem on identical machines in which we want to assign a set of n given jobs to m machines in order to minimize the maximum load over the machines. We prove upper and lower bounds for the extension complexity of its linear programming formulations. In particular, we prove that the canonical formulation for the problem has extension complexity 2(Omega(n/logn)), even if each job has size 1 or 2 and the optimal makespan is 2.
Patrocinador
GACR project, Czech Republic
17-09142S
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1170223
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Operations Research Letters. Vol. 48, No. 4, July 2020: 472-479
Collections
The following license files are associated with this item: