Characterization of Filippov representable maps and Clarke subdifferentials
Author
dc.contributor.author
Bivas, Mira
Author
dc.contributor.author
Daniilidis, Aris
Author
dc.contributor.author
Quincampoix, Marc
Admission date
dc.date.accessioned
2020-10-19T17:03:11Z
Available date
dc.date.available
2020-10-19T17:03:11Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Mathematical Programming Jul 2020
es_ES
Identifier
dc.identifier.other
10.1007/s10107-020-01540-y
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/177231
Abstract
dc.description.abstract
The ordinary differential equation x˙ (t) = f(x(t)), t ≥ 0, for f measurable, is not sufficiently
regular to guarantee existence of solutions. To remedy this we may relax the problem by
replacing the function f with its Filippov regularization Ff and consider the differential inclusion
x˙ (t) ∈ Ff (x(t)) which always has a solution. It is interesting to know, inversely, when a setvalued
map can be obtained as the Filippov regularization of a (single-valued, measurable)
function. In this work we give a full characterization of such set-valued maps, hereby called
Filippov representable. This characterization also yields an elegant description of those maps
that are Clarke subdifferentials of a Lipschitz function.
es_ES
Patrocinador
dc.description.sponsorship
Laboratoire de Mathematiques de Bretagne Atlantique
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1171854
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1171854
Spanish Government
PGC2018-097960-B-C22
European Union (EU)
United States Department of Defense
Air Force Office of Scientific Research (AFOSR)
FA9550-18-1-0254
CMM-AFB170001