Characterization of Filippov representable maps and Clarke subdifferentials
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Bivas, Mira
Cómo citar
Characterization of Filippov representable maps and Clarke subdifferentials
Author
Abstract
The ordinary differential equation x˙ (t) = f(x(t)), t ≥ 0, for f measurable, is not sufficiently
regular to guarantee existence of solutions. To remedy this we may relax the problem by
replacing the function f with its Filippov regularization Ff and consider the differential inclusion
x˙ (t) ∈ Ff (x(t)) which always has a solution. It is interesting to know, inversely, when a setvalued
map can be obtained as the Filippov regularization of a (single-valued, measurable)
function. In this work we give a full characterization of such set-valued maps, hereby called
Filippov representable. This characterization also yields an elegant description of those maps
that are Clarke subdifferentials of a Lipschitz function.
Patrocinador
Laboratoire de Mathematiques de Bretagne Atlantique
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1171854
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1171854
Spanish Government
PGC2018-097960-B-C22
European Union (EU)
United States Department of Defense
Air Force Office of Scientific Research (AFOSR)
FA9550-18-1-0254
CMM-AFB170001
Indexation
Artículo de publicación ISI
Quote Item
Mathematical Programming Jul 2020
Collections
The following license files are associated with this item: